

Wrocław University of Science and Technology

Analytical predictions of bond behavior of FRP bars with concrete

Bar to concrete behaviour

Shear stress along the composite bar – concrete interface

Composite bar free end **slip**

Bond strength

Material of rebar influences bond strength

Bond strength

 $\tau = \frac{F}{C_b \cdot l}$

Elongation of bar

$$S_c = \frac{F \cdot L_a}{E_L \cdot A}$$

Sand coated rebars

Bar to concrete behaviour - idea

Bar to concrete behaviour - idea

Bar to concrete behaviour – pre-peak

Bar to concrete behaviour – bond failure

Bar to concrete behaviour – bond failure

Analytical models - timeline

Bretero Eligehausen- Popov (BEP) 1983		Cosenza- Manfredi- Realfonzo (CMR) 1997		Pecce 2001		
	\bigcirc	\bigcirc		\bigcirc		
	Malvar 1995		modified BEP 2000		Mazaheripour 2012	

Analytical models – BPE model

Analytical models – BPE model - modified

Analytical models – Malvar model

Analytical models – CMR model

(5)

The CMR model was developed by Consenza, Manfred and Realfonzo is a modification of the ascending branch of the bond-slip curve proposed in the BPE model.

$$\tau = \tau_m (1 - exp^{\left(\frac{s}{s_r}\right)})$$

 $s_r = -1.1, \beta = 2$ in presented research based on experiments

Arnaud Rolland et. Al. Analytical and numerical modeling of the bond behavior between FRP reinforcing bars and concrete, CaBM, 2020 (231)

Cosenza, E., G. Manfredi, and R. Realfonzo. 1997. "Behavior and Modeling of Bond of FRP Rebars to Concrete." Journal of Composites for Construction 1 (2): 40–51. https://doi.org/10.1061/(asce)1090-0268(1997)1:2(40).

Experimental validation

Pullout test

Pullout tests are the most simple and economical test to evaluate bond performance of a rebar embedded in concrete.

More details in: ACI 440.3R standard

Experimental setup

Three linear variable displacement transducers were used to record the slip of the rebar relative to the concrete cube.

Analytical models – comparison to experimental values – rods φ7

Analytical models – comparison to experimental values – rods φ8

What to do with model?

Conclusions

- Models proposed originally for bond between metals and concrete like BPE or modified BPE are not sufficient for composites material
- Better results can be achieved by using other models created for composites like Malvar or CMR
- Obtained models can be used to implement them into numerical models