

Wrocław University of Science and Technology

A numerical approach to (bond) behavior of GFRP bars with concrete

Material model - composites

Material model – composites - matrix

		Quantity	Norm	Value	unit	
Pirocin CD111	100	Tensile strength	ISO 527	78	MPa	
+	:	Young modulus (tensile)	ISO 527	3.2	GPa	
Biresin CH141	90	Maximum elongation	ISO 527	3.3	%	
+	:	Flexural strength	ISO 178	145	MPa	
Biresin CA141	2	Young modulus (flexural)	ISO 178	3.1	MPa	
		Dens	ISO 1183	1.2	g∙cm⁻³	

Material model – composites - fibres

pultrusion roving 4800 tex John Manville

8	glass fiber	E ₁ [MPa]	E ₂ [MPa]	$E_3[MPa]$	ν_{12} [-]	$v_{13}[-]$	$v_{23}[-]$	$G_1[MPa]$	$G_2[MPa]$	$G_3[MPa]$
	values	73000	73000	73000	0.2	0.2	0.2	30416	30416	30416

Material model – composites – fiber content

60%4491899460.2510.4063646353870%51939137290.2370.3654970502980%58960206720.2230.32175337827	vol %	E ₁ [MPa]	E ₂ [MPa]	$\nu_{12}\left[- ight]$	$ u_{23}\left[- ight]$	G ₁₂ [MPa]	G ₂₃ [MPa]
70% 51939 13729 0.237 0.365 4970 5029 80% 58960 20672 0.223 0.321 7533 7827	60%	44918	9946	0.251	0.406	3646	3538
80% 58960 20672 0.223 0.321 7533 7827	70%	51939	13729	0.237	0.365	4970	5029
	80%	58960	20672	0.223	0.321	7533	7827

Material model – verification – 4PB

Material model – verification – DCB

Material model – verification – DCB

Material model – concrete

Numerical model – results

Bond behaviour - cohesive surfaces

Modeling of bond behaviour – 2D (axis-symmetry)

Modeling of bond behaviour - cohesive surfaces

Modeling of bond behaviour – 3D

Modeling of bond behaviour – 3D

value

178629

1786

1786

100

500

unit

N·mm⁻³

N·mm⁻³

N•mm⁻³

MPa

N•mm⁻¹

Conclusions

- Modeling of cocrete beams reinforced by composite rebars require well-prepared material models for composite material, concrete and their interface
- Bond behaviour can be successfully modelled with cohesive zone model approach utilizing cohesive surfaces or elements
- Analytical and/or experimental procedures should be utilized in order to obtain required data for bond behaviour